Wearable 3D Machine Knitting

345 views • Apr 19, 2021
167
Save
Cite
Share

Author(s)

Author Name

Uploader

Cem Yuksel

Associate Professor, School of Computing, University of Utah

Field of Study: CS , Published 26 Projects

Graphics AI CS SIGGRAPH 2020

Kui Wu

Published 9 Projects

Marco Tarini

Published 1 Project

Jim McCann

Published 2 Projects

Xifeng Gao

Published 2 Projects

Add New Author

Abstract

Knitting can efficiently fabricate stretchable and durable soft surfaces. These surfaces are often designed to be worn on solid objects as covers, garments, and accessories. Given a 3D model, we consider a knit for it wearable if the knit not only reproduces the shape of the 3D model but also can be put on and taken off from the model without deforming the model. This ``wearability'' places additional constraints on surface design and fabrication, which existing machine knitting approaches do not take into account. We introduce the first practical automatic pipeline to generate knit designs that are both wearable and machine knittable. Our pipeline handles knittability and wearability with two separate modules that run in parallel. Specifically, given a 3D object and its corresponding 3D garment surface, our approach first converts the garment surface into a topological disc by introducing a set of cuts. The resulting cut surface is then fed into a physically-based unclothing simulation module to ensure the garment’s wearability over the object. The unclothing simulation determines which of the previously introduced cuts could be sewn permanently without impacting wearability. Concurrently, the cut surface is converted into an anisotropic stitch mesh. Then, our novel, stochastic, any-time flat-knitting scheduler generates fabrication instructions for an industrial knitting machine. Finally, we fabricate the garment and manually assemble it into one complete covering worn by the target object. We demonstrate our method’s robustness and knitting efficiency by fabricating models with various topological and geometric complexities. Further, we show that our method can be incorporated into a knitting design tool for creating knitted garments with customized patterns.

Rendered result (top) and photographs (bottom) of the real garment being removed following the wearability simulation.